Problems
Primary tabs
- Prove that the limit limx→∞axn does not exist for all n≥1.
- Prove that the limit limx→∞xn does not exist for all n≥1..
- Prove that the limit limx→∞x does not exist.
- Prove that limx→∞1xn=0.
- Prove that limx→∞1x2=0.
- Prove that if limx→∞f(x)=L and limx→∞g(x)=K then limx→∞f(x)+g(x)=L+K.
- Prove that limx→∞C=C where C is a constant.
- Assume that limx→∞f(x)=Landlimx→∞g(x)=K and that K≠0. Prove that limx→∞f(x)g(x)=LK.
- Prove that if limx→∞f(x)=L and limx→∞g(x)=K then limx→∞f(x)g(x)=LK.
- Prove that if limx→∞f(x)=L and L≠0 then limx→∞1f(x)=1L.
- Prove that limx→∞1x=0.