GAIN AN ADVANTAGE
- Fully worked out solutions
- Easy to digest lessons
- Cheat sheets
- PDF: How to Make an A+ in Your First Calculus Course
Lesson Specific Problems
- Prove that if $\lim_{x\to\infty}\,f(x)=L$ and $\lim_{x\to\infty}\,g(x)=K$ then \begin{equation} \lim_{x\to\infty}\,f(x)+g(x)=L+K. \end{equation}
- Prove that \begin{equation} \lim_{x\to\infty}\,C=C \end{equation} where $C$ is a constant.
- Assume that \begin{equation} \lim_{x\to\infty}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to\infty}\,g(x)=K \end{equation} and that $K\neq 0$. Prove that \begin{equation}\lim_{x\to\infty}\,\frac{f(x)}{g(x)}=\frac{L}{K}.\end{equation}
- Prove that if \begin{equation} \lim_{x\to\infty}\,f(x)=L \end{equation} and \begin{equation} \lim_{x\to\infty}\,g(x)=K \end{equation} then \begin{equation} \lim_{x\to\infty}\,f(x)\,g(x)=LK. \end{equation}
- Prove that if \begin{equation} \lim_{x\to\infty}\,f(x)=L \end{equation} and $L\neq 0$ then \begin{equation} \lim_{x\to\infty}\,\frac{1}{f(x)}=\frac{1}{L}. \end{equation}