Prove that if lim and \lim_{x\to\infty}\,g(x)=K then \begin{equation} \lim_{x\to\infty}\,f(x)+g(x)=L+K. \end{equation}

Problem: 

Prove that if \lim_{x\to\infty}\,f(x)=L and \lim_{x\to\infty}\,g(x)=K then
\begin{equation} \lim_{x\to\infty}\,f(x)+g(x)=L+K. \end{equation}

Answer: 

It is true that if \lim_{x\to\infty}\,f(x)=L and \lim_{x\to\infty}\,g(x)=K then \begin{equation} \lim_{x\to\infty}\,f(x)+g(x)=L+K. \end{equation}