Prove that if $\lim_{x\to\infty}\,f(x)=L$ and $\lim_{x\to\infty}\,g(x)=K$ then \begin{equation} \lim_{x\to\infty}\,f(x)+g(x)=L+K. \end{equation}

Problem: 

Prove that if $\lim_{x\to\infty}\,f(x)=L$ and $\lim_{x\to\infty}\,g(x)=K$ then
\begin{equation}
\lim_{x\to\infty}\,f(x)+g(x)=L+K.
\end{equation}

Answer: 

It is true that if $\lim_{x\to\infty}\,f(x)=L$ and $\lim_{x\to\infty}\,g(x)=K$ then \begin{equation} \lim_{x\to\infty}\,f(x)+g(x)=L+K. \end{equation}