Problems
Primary tabs
-
Prove that if a1≤b1≤c1,a2≤b2≤c2,⋮aN≤bN≤cN,then N∑i=1ai≤N∑i=1bi≤N∑i=1ci.
- Prove that if a1≤b1≤c1 and a2≤b2≤c2, then a1+a2≤b1+b2≤c1+c2.
- Prove that if a1≤b1 and a2≤b2, then a1+a2≤b1+b2.
- Prove that if a=bc, b>0 and c>1, then a>b.
- Prove that if a>0 and b>0, then a+b>a and a+b>b.
- Prove that if 0<a<b, then a2<13(a2+ab+b2)<b2.
- Prove that if 0<x1<x2, then x21<x22.
- Solve for x in 5−3x≤8+5x.