Prove that if \begin{eqnarray} a_1&\leq& b_1\leq c_1,\\ a_2&\leq& b_2\leq c_2,\\ &\vdots&\\ a_N&\leq& b_N\leq c_N, \end{eqnarray} then \[ \sum_{i=1}^Na_i\leq \sum_{i=1}^Nb_i\leq \sum_{i=1}^Nc_i. \]

Lesson Parent: 
Problem: 

Prove that if
\begin{eqnarray}
a_1&\leq& b_1\leq c_1,\\
a_2&\leq& b_2\leq c_2,\\
&\vdots&\\
a_N&\leq& b_N\leq c_N,
\end{eqnarray}
then
\[
\sum_{i=1}^Na_i\leq \sum_{i=1}^Nb_i\leq \sum_{i=1}^Nc_i.
\]

Answer: 

It is true that if \begin{eqnarray} a_1&\leq& b_1\leq c_1,\\ a_2&\leq& b_2\leq c_2,\\ &\vdots&\\ a_N&\leq& b_N\leq c_N, \end{eqnarray} then \[ \sum_{i=1}^Na_i\leq \sum_{i=1}^Nb_i\leq \sum_{i=1}^Nc_i. \]