Prove that if a1≤b1≤c1 and a2≤b2≤c2, then a1+a2≤b1+b2≤c1+c2.
Primary tabs
Lesson Parent:
Problem:
Prove that if a1≤b1≤c1 and a2≤b2≤c2, then a1+a2≤b1+b2≤c1+c2.
Answer:
It is true that if a1≤b1≤c1 and a2≤b2≤c2, then a1+a2≤b1+b2≤c1+c2.
Prove that if a1≤b1≤c1 and a2≤b2≤c2, then a1+a2≤b1+b2≤c1+c2.
It is true that if a1≤b1≤c1 and a2≤b2≤c2, then a1+a2≤b1+b2≤c1+c2.