Prove that if $a_1\leq b_1\leq c_1$ and $a_2\leq b_2\leq c_2$, then $a_1+a_2\leq b_1+b_2\leq c_1+c_2$.
Primary tabs
Lesson Parent:
Problem:
Prove that if $a_1\leq b_1\leq c_1$ and $a_2\leq b_2\leq c_2$, then $a_1+a_2\leq b_1+b_2\leq c_1+c_2$.
Answer:
It is true that if $a_1\leq b_1\leq c_1$ and $a_2\leq b_2\leq c_2$, then $a_1+a_2\leq b_1+b_2\leq c_1+c_2$.