Problems
Primary tabs
- Determine limx→2x2+2x−24x−2.
- Determine limx→−3x3+27x+3.
- Prove that limh→01√x+h+√x=12√x.
- Determine the limit limx→3x2−9x−3.
- Prove that if limx→a[f(x)+g(x)]=M and limx→af(x)=L then limx→ag(x) exists and is equal to M−L.
- Determine limx→0x2(1+x)2x.
- Determine limx→1xx+1.
- Pinching Theorem of Function Limits
- Prove that limx→a1f(x)=1L.
- Prove that function limits are unique.
- Prove that limx→af(x)g(x)=LK.
- Prove that limx→aN∑i=1fi(x)=N∑i=1Li.
- Prove that limx→aKf(x)=KL where K is a constant and limx→af(x)=L.
- Prove that limx→a[f(x)+g(x)]=L+K.