Prove that \begin{equation}\lim_{x\to a}\,K\,f(x)=KL\end{equation} where $K$ is a constant and \begin{equation}\lim_{x\to a}\,f(x)=L.\end{equation}
Primary tabs
Lesson Parent:
Problem:
Prove that \begin{equation}\lim_{x\to a}\,K\,f(x)=KL\end{equation} where $K$ is a constant and \begin{equation}\lim_{x\to a}\,f(x)=L.\end{equation}
Answer:
It is true that \begin{equation}\lim_{x\to a}\,K\,f(x)=KL\end{equation} where $K$ is a constant and \begin{equation}\lim_{x\to a}\,f(x)=L.\end{equation}