Problems
Primary tabs
- Show that all $x$ satisfying $0\lt |x-a|\lt\delta$ is equivalent to the union $(a-\delta,a)\cup (a,a+\delta)$ where $a$ is any real number and $\delta\gt 0$.
- Prove that for any real numbers $a$ and $\delta\gt 0$ that the interval $(a-\delta,a+\delta)$ contains the closed interval $[a-\delta/2,a+\delta/2]$.