Prove that if \[ \lim_{x\to a}\,f(x)=L\neq 0 \] and \[ \lim_{x\to a}\,g(x)=0 \] then the limit \[ \lim_{x\to a}\,\frac{f(x)}{g(x)} \] does not exist.

Problem: 

Prove that if
\[
\lim_{x\to a}\,f(x)=L\neq 0
\]
and
\[
\lim_{x\to a}\,g(x)=0
\]
then the limit
\[
\lim_{x\to a}\,\frac{f(x)}{g(x)}
\]
does not exist.

Answer: 

It is true that if \[ \lim_{x\to a}\,f(x)=L\neq 0 \] and \[ \lim_{x\to a}\,g(x)=0 \] then the limit \[ \lim_{x\to a}\,\frac{f(x)}{g(x)} \] does not exist.