Prove that if lim and \lim_{x\to a}\,g(x)=0 then the limit \lim_{x\to a}\,\frac{f(x)}{g(x)} does not exist.

Problem: 

Prove that if
\lim_{x\to a}\,f(x)=L\neq 0
and
\lim_{x\to a}\,g(x)=0
then the limit
\lim_{x\to a}\,\frac{f(x)}{g(x)}
does not exist.

Answer: 

It is true that if \lim_{x\to a}\,f(x)=L\neq 0 and \lim_{x\to a}\,g(x)=0 then the limit \lim_{x\to a}\,\frac{f(x)}{g(x)} does not exist.