If $f(x)$ is continuous and $M(x)$ is the maximum value of $f(x)$ in the closed interval $[x,a]$, then prove that \[ \lim_{x\to a^-}\,M(x)=f(a). \]
Primary tabs
Lesson Parent:
Problem:
If $f(x)$ is continuous and $M(x)$ is the maximum value of $f(x)$ in the closed interval $[x,a]$, then prove that
\[
\lim_{x\to a^-}\,M(x)=f(a).
\]
Answer:
It is true that if $f(x)$ is continuous and $M(x)$ is the maximum value of $f(x)$ in the closed interval $[x,a]$, then \[ \lim_{x\to a^-}\,M(x)=f(a). \]