Prove that if \[\lim_{h\to 0}\,g(h)=0\] and $g(h)\neq 0$ for some interval $(-\bar{\delta},0)\cup (0,\bar{\delta})$ where $\bar{\delta}\gt 0$ then \[ \lim_{h\to 0}\,g(h)=\lim_{g(h)\to 0}\,g(h). \]

Problem: 

Prove that if \[\lim_{h\to 0}\,g(h)=0\] and $g(h)\neq 0$ for some interval $(-\bar{\delta},0)\cup (0,\bar{\delta})$ where $\bar{\delta}\gt 0$ then
\[
\lim_{h\to 0}\,g(h)=\lim_{g(h)\to 0}\,g(h).
\]

Answer: 

\[ \lim_{h\to 0}\,g(h)=\lim_{g(h)\to 0}\,g(h). \]