Prove that if lim and g(h)\neq 0 for some interval (-\bar{\delta},0)\cup (0,\bar{\delta}) where \bar{\delta}\gt 0 then \lim_{h\to 0}\,g(h)=\lim_{g(h)\to 0}\,g(h).

Problem: 

Prove that if \lim_{h\to 0}\,g(h)=0 and g(h)\neq 0 for some interval (-\bar{\delta},0)\cup (0,\bar{\delta}) where \bar{\delta}\gt 0 then
\lim_{h\to 0}\,g(h)=\lim_{g(h)\to 0}\,g(h).

Answer: 

\lim_{h\to 0}\,g(h)=\lim_{g(h)\to 0}\,g(h).