Use the quotient rule to find the derivative of $f(x)/g(x)$ where \begin{eqnarray} f(x)&=&5x^6-16x^5-4x^4\\ &+&72x^3-3x^2-2x+18 \end{eqnarray} and $g(x)=42x^2+32x+7$.

Problem: 

Use the quotient rule to find the derivative of $f(x)/g(x)$ where
\begin{eqnarray}
f(x)&=&5x^6-16x^5-4x^4\\
&+&72x^3-3x^2-2x+18
\end{eqnarray}
and
\[ g(x)=42x^2+32x+7\].

Answer: 

\begin{eqnarray} \frac{d}{dx}\left(\frac{f}{g}\right)&=&\left\{(42x^2+32x+7)(30x^5-80x^4-16x^3+216x^2-6x-2)\right.\\ &-&\left.(5x^6-16x^5-4x^4+72x^3-3x^2-2x+18)(84x+32)\right\}\\ &/&\left\{(42x^2+32x+7)^2\right\}. \end{eqnarray}