Use the product rule to find the derivative of $f(x)g(x)$ where $f(x)=5x^6-16x^5-4x^4+72x^3-3x^2-2x+18$ and $g(x)=42x^2+32x+7$.
Primary tabs
Lesson Parent:
Problem:
Use the product rule to find the derivative of $f(x)g(x)$ where $f(x)=5x^6-16x^5-4x^4+72x^3-3x^2-2x+18$ and $g(x)=42x^2+32x+7$.
Answer:
\begin{eqnarray} \frac{d}{dx}fg&=&(42x^2+32x+7)(30x^5-80x^4-16x^3+216x^2-6x-2)\\ &+&(5x^6-16x^5-4x^4+72x^3-3x^2-2x+18)(84x+32) \end{eqnarray}