Prove for a bounded function on $[a,b]$ that if there exists a unique number $I$ such that for all partitions $P$, $L(P)\leq I\leq U(P)$, then $\phi=\Phi$.

Problem: 

Prove for a bounded function on $[a,b]$ that if there exists a unique number $I$ such that for all partitions $P$, $L(P)\leq I\leq U(P)$, then $\phi=\Phi$.

Answer: 

It is true that if there exists a unique number $I$ such that for all partitions $P$, $L(P)\leq I\leq U(P)$, then $\phi=\Phi$.