Prove that \[\lim_{x\to a}\,f(x)=L\] if and only if \[\lim_{x\to a}\,(f(x)-L)=0.\]
Primary tabs
Lesson Parent:
Problem:
Prove that \[\lim_{x\to a}\,f(x)=L\] if and only if \[\lim_{x\to a}\,(f(x)-L)=0.\]
Answer:
It is true that \[\lim_{x\to a}\,f(x)=L\] if and only if \[\lim_{x\to a}\,(f(x)-L)=0.\]