Prove that \[\lim_{x\to a}\,f(x)=L\] if and only if \[\lim_{x\to a}\,(f(x)-L)=0.\]

Problem: 

Prove that \[\lim_{x\to a}\,f(x)=L\] if and only if \[\lim_{x\to a}\,(f(x)-L)=0.\]

Answer: 

It is true that \[\lim_{x\to a}\,f(x)=L\] if and only if \[\lim_{x\to a}\,(f(x)-L)=0.\]