Prove that \begin{equation}\lim_{x\to a}\,f(x)/g(x)=L/K\end{equation} if $K\neq 0$.

Problem: 

Assume that
\begin{equation}
\lim_{x\to a}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a}\,g(x)=K
\end{equation}
and that $K\neq 0$. Prove that \begin{equation}\lim_{x\to a}\,\frac{f(x)}{g(x)}=\frac{L}{K}.\end{equation}

Answer: 

It is true that \begin{equation}\lim_{x\to a}\,f(x)/g(x)=L/K\end{equation} if $K\neq 0$.