Prove that \[ \lim_{x\to a^+}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^+}\,f(x)=L \] and \[ \lim_{x\to a^+}\,g(x)=K. \]

Problem: 

Prove that
\[
\lim_{x\to a^+}\,[f(x)+g(x)]=L+K
\]
if
\[
\lim_{x\to a^+}\,f(x)=L
\]
and
\[
\lim_{x\to a^+}\,g(x)=K.
\]

Answer: 

It is true that \[ \lim_{x\to a^+}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^+}\,f(x)=L \] and \[ \lim_{x\to a^+}\,g(x)=K. \]