Prove that limwhere f(x)=\left\{\begin{array}{c}3x^2-18&x\neq 3 \\ 5 & x=3\\\end{array}\right.

Problem: 

Prove that
\lim_{x\to 3}\,f(x)=9 where
f(x)=\left\{\begin{array}{x}3x^2-18&x\neq 3 \\ 5 & x=3\\\end{array}\right.

Answer: 

It is true that \lim_{x\to 3}\,f(x)=9 where f(x)=\left\{\begin{array}{x}3x^2-18&x\neq 3 \\ 5 & x=3\\\end{array}\right.