Prove that \[ \lim_{x\to 3}\,f(x)=9 \]where \[ f(x)=\left\{\begin{array}{c}3x^2-18&x\neq 3 \\ 5 & x=3\\\end{array}\right. \]

Problem: 

Prove that
\[
\lim_{x\to 3}\,f(x)=9
\]where
\[
f(x)=\left\{\begin{array}{x}3x^2-18&x\neq 3 \\ 5 & x=3\\\end{array}\right.
\]

Answer: 

It is true that \[ \lim_{x\to 3}\,f(x)=9 \]where \[ f(x)=\left\{\begin{array}{x}3x^2-18&x\neq 3 \\ 5 & x=3\\\end{array}\right. \]