Prove that if $0\lt x_1\lt x_2$, then $x^2_1\lt x^2_2$.
Primary tabs
Lesson Parent:
Problem:
Prove that if $0\lt x_1\lt x_2$, then $x^2_1\lt x^2_2$.
Answer:
It is true that if $0\lt x_1\lt x_2$, then $x^2_1\lt x^2_2$.
Prove that if $0\lt x_1\lt x_2$, then $x^2_1\lt x^2_2$.
It is true that if $0\lt x_1\lt x_2$, then $x^2_1\lt x^2_2$.