GAIN AN ADVANTAGE
- Fully worked out solutions
- Easy to digest lessons
- Cheat sheets
- PDF: How to Make an A+ in Your First Calculus Course
Lesson Specific Problems
- Prove that if \begin{equation}\lim_{x\to a-}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a+}\,f(x)=L\end{equation} then \begin{equation}\lim_{x\to a\,}\,f(x)=L.\end{equation}
- Prove that if \begin{equation}\lim_{x\to a\,}\,f(x)=L\end{equation} then \begin{equation}\lim_{x\to a-}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a+}\,f(x)=L.\end{equation}
- Determine \begin{equation}\lim_{x\to 2}\,f(x)\quad\mbox{where}\quad f(x)=\left\{\begin{array}{lr}x^2,&x\leq 1\\5x,&x\gt 1\end{array}\right.\end{equation}
- Determine \begin{equation}\lim_{x\to 3}\,f(x)\end{equation} where \begin{equation}f(x)=\left\{\begin{array}{lr}x^2,&x\lt3\\10,&x=3\\2x+3,&x\gt 3\end{array}\right.\end{equation}